Point Group C29



ε=exp(2πi/29)
C29 E C29 (C29)2 (C29)3 (C29)4 (C29)5 (C29)6 (C29)7 (C29)8 (C29)9 (C29)10 (C29)11 (C29)12 (C29)13 (C29)14 (C29)15 (C29)16 (C29)17 (C29)18 (C29)19 (C29)20 (C29)21 (C29)22 (C29)23 (C29)24 (C29)25 (C29)26 (C29)27 (C29)28
A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E1* 1
1
ε*
ε*
ε2*
ε2*
ε3*
ε3*
ε4*
ε4*
ε5*
ε5*
ε6*
ε6*
ε7*
ε7*
ε8*
ε8*
ε9*
ε9*
ε10*
ε10*
ε11*
ε11*
ε12*
ε12*
ε13*
ε13*
ε14*
ε14*
ε14*
ε14*
ε13*
ε13*
ε12*
ε12*
ε11*
ε11*
ε10*
ε10*
ε9*
ε9*
ε8*
ε8*
ε7*
ε7*
ε6*
ε6*
ε5*
ε5*
ε4*
ε4*
ε3*
ε3*
ε2*
ε2*
ε*
ε*
E2* 1
1
ε2*
ε2*
ε4*
ε4*
ε6*
ε6*
ε8*
ε8*
ε10*
ε10*
ε12*
ε12*
ε14*
ε14*
ε13*
ε13*
ε11*
ε11*
ε9*
ε9*
ε7*
ε7*
ε5*
ε5*
ε3*
ε3*
ε*
ε*
ε*
ε*
ε3*
ε3*
ε5*
ε5*
ε7*
ε7*
ε9*
ε9*
ε11*
ε11*
ε13*
ε13*
ε14*
ε14*
ε12*
ε12*
ε10*
ε10*
ε8*
ε8*
ε6*
ε6*
ε4*
ε4*
ε2*
ε2*
E3* 1
1
ε3*
ε3*
ε6*
ε6*
ε9*
ε9*
ε12*
ε12*
ε14*
ε14*
ε11*
ε11*
ε8*
ε8*
ε5*
ε5*
ε2*
ε2*
ε*
ε*
ε4*
ε4*
ε7*
ε7*
ε10*
ε10*
ε13*
ε13*
ε13*
ε13*
ε10*
ε10*
ε7*
ε7*
ε4*
ε4*
ε*
ε*
ε2*
ε2*
ε5*
ε5*
ε8*
ε8*
ε11*
ε11*
ε14*
ε14*
ε12*
ε12*
ε9*
ε9*
ε6*
ε6*
ε3*
ε3*
E4* 1
1
ε4*
ε4*
ε8*
ε8*
ε12*
ε12*
ε13*
ε13*
ε9*
ε9*
ε5*
ε5*
ε*
ε*
ε3*
ε3*
ε7*
ε7*
ε11*
ε11*
ε14*
ε14*
ε10*
ε10*
ε6*
ε6*
ε2*
ε2*
ε2*
ε2*
ε6*
ε6*
ε10*
ε10*
ε14*
ε14*
ε11*
ε11*
ε7*
ε7*
ε3*
ε3*
ε*
ε*
ε5*
ε5*
ε9*
ε9*
ε13*
ε13*
ε12*
ε12*
ε8*
ε8*
ε4*
ε4*
E5* 1
1
ε5*
ε5*
ε10*
ε10*
ε14*
ε14*
ε9*
ε9*
ε4*
ε4*
ε*
ε*
ε6*
ε6*
ε11*
ε11*
ε13*
ε13*
ε8*
ε8*
ε3*
ε3*
ε2*
ε2*
ε7*
ε7*
ε12*
ε12*
ε12*
ε12*
ε7*
ε7*
ε2*
ε2*
ε3*
ε3*
ε8*
ε8*
ε13*
ε13*
ε11*
ε11*
ε6*
ε6*
ε*
ε*
ε4*
ε4*
ε9*
ε9*
ε14*
ε14*
ε10*
ε10*
ε5*
ε5*
E6* 1
1
ε6*
ε6*
ε12*
ε12*
ε11*
ε11*
ε5*
ε5*
ε*
ε*
ε7*
ε7*
ε13*
ε13*
ε10*
ε10*
ε4*
ε4*
ε2*
ε2*
ε8*
ε8*
ε14*
ε14*
ε9*
ε9*
ε3*
ε3*
ε3*
ε3*
ε9*
ε9*
ε14*
ε14*
ε8*
ε8*
ε2*
ε2*
ε4*
ε4*
ε10*
ε10*
ε13*
ε13*
ε7*
ε7*
ε*
ε*
ε5*
ε5*
ε11*
ε11*
ε12*
ε12*
ε6*
ε6*
E7* 1
1
ε7*
ε7*
ε14*
ε14*
ε8*
ε8*
ε*
ε*
ε6*
ε6*
ε13*
ε13*
ε9*
ε9*
ε2*
ε2*
ε5*
ε5*
ε12*
ε12*
ε10*
ε10*
ε3*
ε3*
ε4*
ε4*
ε11*
ε11*
ε11*
ε11*
ε4*
ε4*
ε3*
ε3*
ε10*
ε10*
ε12*
ε12*
ε5*
ε5*
ε2*
ε2*
ε9*
ε9*
ε13*
ε13*
ε6*
ε6*
ε*
ε*
ε8*
ε8*
ε14*
ε14*
ε7*
ε7*
E8* 1
1
ε8*
ε8*
ε13*
ε13*
ε5*
ε5*
ε3*
ε3*
ε11*
ε11*
ε10*
ε10*
ε2*
ε2*
ε6*
ε6*
ε14*
ε14*
ε7*
ε7*
ε*
ε*
ε9*
ε9*
ε12*
ε12*
ε4*
ε4*
ε4*
ε4*
ε12*
ε12*
ε9*
ε9*
ε*
ε*
ε7*
ε7*
ε14*
ε14*
ε6*
ε6*
ε2*
ε2*
ε10*
ε10*
ε11*
ε11*
ε3*
ε3*
ε5*
ε5*
ε13*
ε13*
ε8*
ε8*
E9* 1
1
ε9*
ε9*
ε11*
ε11*
ε2*
ε2*
ε7*
ε7*
ε13*
ε13*
ε4*
ε4*
ε5*
ε5*
ε14*
ε14*
ε6*
ε6*
ε3*
ε3*
ε12*
ε12*
ε8*
ε8*
ε*
ε*
ε10*
ε10*
ε10*
ε10*
ε*
ε*
ε8*
ε8*
ε12*
ε12*
ε3*
ε3*
ε6*
ε6*
ε14*
ε14*
ε5*
ε5*
ε4*
ε4*
ε13*
ε13*
ε7*
ε7*
ε2*
ε2*
ε11*
ε11*
ε9*
ε9*
E10* 1
1
ε10*
ε10*
ε9*
ε9*
ε*
ε*
ε11*
ε11*
ε8*
ε8*
ε2*
ε2*
ε12*
ε12*
ε7*
ε7*
ε3*
ε3*
ε13*
ε13*
ε6*
ε6*
ε4*
ε4*
ε14*
ε14*
ε5*
ε5*
ε5*
ε5*
ε14*
ε14*
ε4*
ε4*
ε6*
ε6*
ε13*
ε13*
ε3*
ε3*
ε7*
ε7*
ε12*
ε12*
ε2*
ε2*
ε8*
ε8*
ε11*
ε11*
ε*
ε*
ε9*
ε9*
ε10*
ε10*
E11* 1
1
ε11*
ε11*
ε7*
ε7*
ε4*
ε4*
ε14*
ε14*
ε3*
ε3*
ε8*
ε8*
ε10*
ε10*
ε*
ε*
ε12*
ε12*
ε6*
ε6*
ε5*
ε5*
ε13*
ε13*
ε2*
ε2*
ε9*
ε9*
ε9*
ε9*
ε2*
ε2*
ε13*
ε13*
ε5*
ε5*
ε6*
ε6*
ε12*
ε12*
ε*
ε*
ε10*
ε10*
ε8*
ε8*
ε3*
ε3*
ε14*
ε14*
ε4*
ε4*
ε7*
ε7*
ε11*
ε11*
E12* 1
1
ε12*
ε12*
ε5*
ε5*
ε7*
ε7*
ε10*
ε10*
ε2*
ε2*
ε14*
ε14*
ε3*
ε3*
ε9*
ε9*
ε8*
ε8*
ε4*
ε4*
ε13*
ε13*
ε*
ε*
ε11*
ε11*
ε6*
ε6*
ε6*
ε6*
ε11*
ε11*
ε*
ε*
ε13*
ε13*
ε4*
ε4*
ε8*
ε8*
ε9*
ε9*
ε3*
ε3*
ε14*
ε14*
ε2*
ε2*
ε10*
ε10*
ε7*
ε7*
ε5*
ε5*
ε12*
ε12*
E13* 1
1
ε13*
ε13*
ε3*
ε3*
ε10*
ε10*
ε6*
ε6*
ε7*
ε7*
ε9*
ε9*
ε4*
ε4*
ε12*
ε12*
ε*
ε*
ε14*
ε14*
ε2*
ε2*
ε11*
ε11*
ε5*
ε5*
ε8*
ε8*
ε8*
ε8*
ε5*
ε5*
ε11*
ε11*
ε2*
ε2*
ε14*
ε14*
ε*
ε*
ε12*
ε12*
ε4*
ε4*
ε9*
ε9*
ε7*
ε7*
ε6*
ε6*
ε10*
ε10*
ε3*
ε3*
ε13*
ε13*
E14* 1
1
ε14*
ε14*
ε*
ε*
ε13*
ε13*
ε2*
ε2*
ε12*
ε12*
ε3*
ε3*
ε11*
ε11*
ε4*
ε4*
ε10*
ε10*
ε5*
ε5*
ε9*
ε9*
ε6*
ε6*
ε8*
ε8*
ε7*
ε7*
ε7*
ε7*
ε8*
ε8*
ε6*
ε6*
ε9*
ε9*
ε5*
ε5*
ε10*
ε10*
ε4*
ε4*
ε11*
ε11*
ε3*
ε3*
ε12*
ε12*
ε2*
ε2*
ε13*
ε13*
ε*
ε*
ε14*
ε14*


Additional information

Number of symmetry elements h = 29
Number of classes, irreps n = 29
Number of real-valued irreducible representations n = 15
Abelian group yes
Optical Isomerism (Chirality) yes
Polar yes
Parity no


Reduce representation to irreducible representations


E C29 (C29)2 (C29)3 (C29)4 (C29)5 (C29)6 (C29)7 (C29)8 (C29)9 (C29)10 (C29)11 (C29)12 (C29)13 (C29)14 (C29)15 (C29)16 (C29)17 (C29)18 (C29)19 (C29)20 (C29)21 (C29)22 (C29)23 (C29)24 (C29)25 (C29)26 (C29)27 (C29)28



Genrate representation from irreducible representations


A E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* E14*




Direct products of irreducible representations


Binary products
A E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* E14*
A A
E1* E12A⊕E2
E2* E2E1⊕E32A⊕E4
E3* E3E2⊕E4E1⊕E52A⊕E6
E4* E4E3⊕E5E2⊕E6E1⊕E72A⊕E8
E5* E5E4⊕E6E3⊕E7E2⊕E8E1⊕E92A⊕E10
E6* E6E5⊕E7E4⊕E8E3⊕E9E2⊕E10E1⊕E112A⊕E12
E7* E7E6⊕E8E5⊕E9E4⊕E10E3⊕E11E2⊕E12E1⊕E132A⊕E14
E8* E8E7⊕E9E6⊕E10E5⊕E11E4⊕E12E3⊕E13E2⊕E14E1⊕E142A⊕E13
E9* E9E8⊕E10E7⊕E11E6⊕E12E5⊕E13E4⊕E14E3⊕E14E2⊕E13E1⊕E122A⊕E11
E10* E10E9⊕E11E8⊕E12E7⊕E13E6⊕E14E5⊕E14E4⊕E13E3⊕E12E2⊕E11E1⊕E102A⊕E9
E11* E11E10⊕E12E9⊕E13E8⊕E14E7⊕E14E6⊕E13E5⊕E12E4⊕E11E3⊕E10E2⊕E9E1⊕E82A⊕E7
E12* E12E11⊕E13E10⊕E14E9⊕E14E8⊕E13E7⊕E12E6⊕E11E5⊕E10E4⊕E9E3⊕E8E2⊕E7E1⊕E62A⊕E5
E13* E13E12⊕E14E11⊕E14E10⊕E13E9⊕E12E8⊕E11E7⊕E10E6⊕E9E5⊕E8E4⊕E7E3⊕E6E2⊕E5E1⊕E42A⊕E3
E14* E14E13⊕E14E12⊕E13E11⊕E12E10⊕E11E9⊕E10E8⊕E9E7⊕E8E6⊕E7E5⊕E6E4⊕E5E3⊕E4E2⊕E3E1⊕E22A⊕E1

Ternary Products
Quaternary Products



Symmetric powers [Γn] of degenerate irreducible representations
Vibrational overtones


irrep 2] 3] 4] 5] 6]
E1* A⊕E2E1⊕E3A⊕E2⊕E4E1⊕E3⊕E5A⊕E2⊕E4⊕E6More
E2* A⊕E4E2⊕E6A⊕E4⊕E8E2⊕E6⊕E10A⊕E4⊕E8⊕E12More
E3* A⊕E6E3⊕E9A⊕E6⊕E12E3⊕E9⊕E14A⊕E6⊕E11⊕E12More
E4* A⊕E8E4⊕E12A⊕E8⊕E13E4⊕E9⊕E12A⊕E5⊕E8⊕E13More
E5* A⊕E10E5⊕E14A⊕E9⊕E10E4⊕E5⊕E14A⊕E1⊕E9⊕E10More
E6* A⊕E12E6⊕E11A⊕E5⊕E12E1⊕E6⊕E11A⊕E5⊕E7⊕E12More
E7* A⊕E14E7⊕E8A⊕E1⊕E14E6⊕E7⊕E8A⊕E1⊕E13⊕E14More
E8* A⊕E13E5⊕E8A⊕E3⊕E13E5⊕E8⊕E11A⊕E3⊕E10⊕E13More
E9* A⊕E11E2⊕E9A⊕E7⊕E11E2⊕E9⊕E13A⊕E4⊕E7⊕E11More
E10* A⊕E9E1⊕E10A⊕E9⊕E11E1⊕E8⊕E10A⊕E2⊕E9⊕E11More
E11* A⊕E7E4⊕E11A⊕E7⊕E14E3⊕E4⊕E11A⊕E7⊕E8⊕E14More
E12* A⊕E5E7⊕E12A⊕E5⊕E10E2⊕E7⊕E12A⊕E5⊕E10⊕E14More
E13* A⊕E3E10⊕E13A⊕E3⊕E6E7⊕E10⊕E13A⊕E3⊕E6⊕E9More
E14* A⊕E1E13⊕E14A⊕E1⊕E2E12⊕E13⊕E14A⊕E1⊕E2⊕E3More



Spherical harmonics and Multipoles
Symmetric Powers of Γxyz


Spherical Harmonics Yl / Multipole Symmetric Power [Γl(xyz)]
l 2l+1 Multipole Symmetry Rank l(xyz)]
s (l=0) 1 Monopole A 1 A
p (l=1) 3 Dipole A⊕E1 3 A⊕E1
d (l=2) 5 Quadrupole A⊕E1⊕E2 6 2A⊕E1⊕E2
f (l=3) 7 Octupole A⊕E1⊕E2⊕E3 10 2A⊕2E1⊕E2⊕E3
g (l=4) 9 Hexadecapole A⊕E1⊕E2⊕E3⊕E4 15 3A⊕2E1⊕2E2⊕E3⊕E4
h (l=5) 11 Dotricontapole A⊕E1⊕E2⊕E3⊕E4⊕E5 21 3A⊕3E1⊕2E2⊕2E3⊕E4⊕E5
i (l=6) 13 Tetrahexacontapole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6 28 4A⊕3E1⊕3E2⊕2E3⊕2E4⊕E5⊕E6
j (l=7) 15 Octacosahectapole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7 36 4A⊕4E1⊕3E2⊕3E3⊕2E4⊕2E5⊕E6⊕E7
k (l=8) 17 256-pole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8 45 5A⊕4E1⊕4E2⊕3E3⊕3E4⊕2E5⊕2E6⊕E7⊕E8
l (l=9) 19 512-pole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9 55 5A⊕5E1⊕4E2⊕4E3⊕3E4⊕3E5⊕2E6⊕2E7⊕E8⊕E9
m (l=10) 21 1024-pole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9⊕E10 66 6A⊕5E1⊕5E2⊕4E3⊕4E4⊕3E5⊕3E6⊕2E7⊕2E8⊕E9⊕E10
n (l=11) 23 2048-pole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9⊕E10⊕E11 78 6A⊕6E1⊕5E2⊕5E3⊕4E4⊕4E5⊕3E6⊕3E7⊕2E8⊕2E9⊕E10⊕E11
o (l=12) 25 4096-pole A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6⊕E7⊕E8⊕E9⊕E10⊕E11⊕E12 91 7A⊕6E1⊕6E2⊕5E3⊕5E4⊕4E5⊕4E6⊕3E7⊕3E8⊕2E9⊕2E10⊕E11⊕E12
More

First nonvanshing multipole: Dipole

Further Reading

  • A. Gelessus, W. Thiel, W. Weber. J. Chem. Educ. 72 505 (1995)
    Multipoles and symmetry




Ligand Field, dn term splitting


Term symbols for electronic configurations dn
dn Term Symbols
d1 = d9 2D
d2 = d8 1S, 1D, 1G, 3P, 3F
d3 = d7 2P, 2D (2), 2F, 2G, 2H, 4P, 4F
d4 = d6 1S (2), 1D (2), 1F, 1G (2), 1I, 3P (2), 3D, 3F (2), 3G, 3H, 5D
d5 2S, 2P, 2D (3), 2F (2), 2G (2), 2H, 2I, 4P, 4D, 4F, 4G, 6S


Term splitting in point group C29
L 2L+1 Term Splitting
S (L=0) 1 A
P (L=1) 3 A⊕E1
D (L=2) 5 A⊕E1⊕E2
F (L=3) 7 A⊕E1⊕E2⊕E3
G (L=4) 9 A⊕E1⊕E2⊕E3⊕E4
H (L=5) 11 A⊕E1⊕E2⊕E3⊕E4⊕E5
I (L=6) 13 A⊕E1⊕E2⊕E3⊕E4⊕E5⊕E6


Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement