Results for Point Group C29



Characters of symmetric power
Power
To
E C29 (C29)2 (C29)3 (C29)4 (C29)5 (C29)6 (C29)7 (C29)8 (C29)9 (C29)10 (C29)11 (C29)12 (C29)13 (C29)14 (C29)15 (C29)16 (C29)17 (C29)18 (C29)19 (C29)20 (C29)21 (C29)22 (C29)23 (C29)24 (C29)25 (C29)26 (C29)27 (C29)28
1 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column for irrep highlighted
Power
To
A E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* E14*
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Contributions to irrep


pos(X) : Position of irreducible representation (irrep) X in character table of C29

Subtotal: <Contributions to irrep in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Contributions to irrep > / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to irrep for symmetric power to 2
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 15
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 105
Total: 0 / 0 / 120


Contributions to irrep for symmetric power to 3
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 210
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 455
Total: 0 / 0 / 680


Contributions to irrep for symmetric power to 4
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E14)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 210
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E14)
Subtotal: 0 / 0 / 105
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E14)
Subtotal: 0 / 0 / 1.365
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E14)
Subtotal: 0 / 0 / 1.365
Total: 0 / 0 / 3.060


Calculate contributions to

A E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement