Results for Point Group C28



Force field analysis


Allowed / forbidden vibronational transitions
Operator A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* Total
Linear (IR) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
Quadratic (Raman) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 / 0
IR + Raman 0 0 0 - - - - 0 0 0 0 0 0 0 0 0 0 0 0 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E C28 C14 (C28)3 C7 (C28)5 (C14)3 C4 (C7)2 (C28)9 (C14)5 (C28)11 (C7)3 (C28)13 C2 (C28)15 (C7)4 (C28)17 (C14)9 (C28)19 (C7)5 (C4)3 (C14)11 (C28)23 (C7)6 (C28)25 (C14)13 (C28)27
linear 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
quadratic 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
cubic 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
quartic 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
quintic 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
sextic 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13*
linear 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quadratic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
cubic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quartic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
quintic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sextic 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of C28

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Total: 0 / 0 / 120


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 455
Total: 0 / 0 / 680


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Total: 0 / 0 / 3.060


Calculate contributions to

A B E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement