Results for Point Group C28



Characters of representations for molecular motions
Motion E C28 C14 (C28)3 C7 (C28)5 (C14)3 C4 (C7)2 (C28)9 (C14)5 (C28)11 (C7)3 (C28)13 C2 (C28)15 (C7)4 (C28)17 (C14)9 (C28)19 (C7)5 (C4)3 (C14)11 (C28)23 (C7)6 (C28)25 (C14)13 (C28)27
Cartesian 3N 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000 0.000 0.000
Translation (x,y,z) 3 2.950 2.802 2.564 2.247 1.868 1.445 1 0.555 0.132 -0.247 -0.564 -0.802 -0.950 -1 -0.950 -0.802 -0.564 -0.247 0.132 0.555 1 1.445 1.868 2.247 2.564 2.802 2.950
Rotation (Rx,Ry,Rz) 3 2.950 2.802 2.564 2.247 1.868 1.445 1 0.555 0.132 -0.247 -0.564 -0.802 -0.950 -1 -0.950 -0.802 -0.564 -0.247 0.132 0.555 1 1.445 1.868 2.247 2.564 2.802 2.950
Vibration -6 -5.900 -5.604 -5.127 -4.494 -3.736 -2.890 -2 -1.110 -0.264 0.494 1.127 1.604 1.900 2 1.900 1.604 1.127 0.494 -0.264 -1.110 -2 -2.890 -3.736 -4.494 -5.127 -5.604 -5.900


Decomposition to irreducible representations
Motion A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* Total
Cartesian 3N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Translation (x,y,z) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
Rotation (Rx,Ry,Rz) 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2
Vibration -2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 -4



Molecular parameter
Number of Atoms (N) 0
Number of internal coordinates -6
Number of independant internal coordinates -2
Number of vibrational modes -4


Force field analysis


Allowed / forbidden vibronational transitions
Operator A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13* Total
Linear (IR) -2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 -4 / 0
Quadratic (Raman) -2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0 -4 / 0
IR + Raman -2 0 -2 - - - - 0 0 0 0 0 0 0 0 0 0 0 -4 / 0


Characters of force fields
(Symmetric powers of vibration representation)
Force field E C28 C14 (C28)3 C7 (C28)5 (C14)3 C4 (C7)2 (C28)9 (C14)5 (C28)11 (C7)3 (C28)13 C2 (C28)15 (C7)4 (C28)17 (C14)9 (C28)19 (C7)5 (C4)3 (C14)11 (C28)23 (C7)6 (C28)25 (C14)13 (C28)27
linear -6 -5.900 -5.604 -5.127 -4.494 -3.736 -2.890 -2 -1.110 -0.264 0.494 1.127 1.604 1.900 2 1.900 1.604 1.127 0.494 -0.264 -1.110 -2 -2.890 -3.736 -4.494 -5.127 -5.604 -5.900
quadratic 15 14.601 13.455 11.700 9.543 7.224 4.978 3 1.418 0.282 -0.433 -0.810 -0.961 -0.997 -1 -0.997 -0.961 -0.810 -0.433 0.282 1.418 3 4.978 7.224 9.543 11.700 13.455 14.601
cubic -20 -19.403 -17.702 -15.145 -12.098 -8.977 -6.176 -4 -2.616 -2.035 -2.122 -2.635 -3.286 -3.804 -4 -3.804 -3.286 -2.635 -2.122 -2.035 -2.616 -4 -6.176 -8.977 -12.098 -15.145 -17.702 -19.403
quartic 15 14.601 13.455 11.700 9.543 7.224 4.978 3 1.418 0.282 -0.433 -0.810 -0.961 -0.997 -1 -0.997 -0.961 -0.810 -0.433 0.282 1.418 3 4.978 7.224 9.543 11.700 13.455 14.601
quintic -6 -5.900 -5.604 -5.127 -4.494 -3.736 -2.890 -2 -1.110 -0.264 0.494 1.127 1.604 1.900 2 1.900 1.604 1.127 0.494 -0.264 -1.110 -2 -2.890 -3.736 -4.494 -5.127 -5.604 -5.900
sextic 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000 1 1.000 1.000 1.000 1.000 1.000 1.000


Decomposition to irreducible representations
Column with number of nonvanshing force constants highlighted
Force field A B E1* E2* E3* E4* E5* E6* E7* E8* E9* E10* E11* E12* E13*
linear -2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0
quadratic 5 0 4 1 0 0 0 0 0 0 0 0 0 0 0
cubic -8 0 -4 -2 0 0 0 0 0 0 0 0 0 0 0
quartic 5 0 4 1 0 0 0 0 0 0 0 0 0 0 0
quintic -2 0 -2 0 0 0 0 0 0 0 0 0 0 0 0
sextic 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Further Reading



Contributions to nonvanishing force field constants


pos(X) : Position of irreducible representation (irrep) X in character table of C28

Subtotal: <Number of nonvanishing force constants in subsection> / <number of nonzero irrep combinations in subsection> / <number of irrep combinations in subsection>
Total: <Number of nonvanishing force constants in force field> / <number of nonzero irrep combinations in force field> / <number of irrep combinations in force field>


Contributions to nonvanishing quadratic force field constants
Irrep combinations (i,i) with indices: pos(A) ≤ i ≤ pos(E13)
..1. AA...4. E1E1.
Subtotal: 5 / 2 / 15
Irrep combinations (i,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 105
Total: 5 / 2 / 120


Contributions to nonvanishing cubic force field constants
Irrep combinations (i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
Subtotal: 0 / 0 / 15
Irrep combinations (i,i,j) (i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: -8 / 0 / 210
Irrep combinations (i,j,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 455
Total: -8 / 0 / 680


Contributions to nonvanishing quartic force field constants
Irrep combinations (i,i,i,i) with indices: pos(A) ≤ i ≤ pos(E13)
..1. E1E1E1E1.
Subtotal: 1 / 1 / 15
Irrep combinations (i,i,i,j) (i,j,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
Subtotal: 0 / 0 / 210
Irrep combinations (i,i,j,j) with indices: pos(A) ≤ i ≤ j ≤ pos(E13)
..4. AAE1E1.
Subtotal: 4 / 1 / 105
Irrep combinations (i,i,j,k) (i,j,j,k) (i,j,k,k) with indices: pos(A) ≤ i ≤ j ≤ k ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Irrep combinations (i,j,k,l) with indices: pos(A) ≤ i ≤ j ≤ k ≤ l ≤ pos(E13)
Subtotal: 0 / 0 / 1.365
Total: 5 / 2 / 3.060


Calculate contributions to

A B E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13
Show only nonzero contributions Show all contributions






Last update November, 13th 2023 by A. Gelessus, Impressum, Datenschutzerklärung/DataPrivacyStatement